1 research outputs found

    Optimisation de réseaux de neurones à décharges avec contraintes matérielles pour processeur neuromorphique

    Get PDF
    Les modèles informatiques basés sur l'apprentissage machine ont démarré la seconde révolution de l'intelligence artificielle. Capables d'atteindre des performances que l'on crut inimaginables au préalable, ces modèles semblent devenir partie courante dans plusieurs domaines. La face cachée de ceux-ci est que l'énergie consommée pour l'apprentissage, et l'utilisation de ces techniques, est colossale. La dernière décennie a été marquée par l'arrivée de plusieurs processeurs neuromorphiques pouvant simuler des réseaux de neurones avec une faible consommation d'énergie. Ces processeurs offrent une alternative aux conventionnelles cartes graphiques qui demeurent à ce jour essentielles au domaine. Ces processeurs sont capables de réduire la consommation d'énergie en utilisant un modèle de neurone événementiel, plus communément appelé neurone à décharge. Ce type de neurone est fondamentalement différent du modèle classique, et possède un aspect temporel important. Les méthodes, algorithmes et outils développés pour le modèle de neurone classique ne sont pas adaptés aux neurones à décharges. Cette thèse de doctorat décrit plusieurs approches fondamentales, dédiées à la création de processeurs neuromorphiques analogiques, qui permettent de pallier l'écart existant entre les systèmes à base de neurones conventionnels et à décharges. Dans un premier temps, nous présentons une nouvelle règle de plasticité synaptique permettant l'apprentissage non supervisé des réseaux de neurones récurrents utilisant ce nouveau type de neurone. Puis, nous proposons deux nouvelles méthodes pour la conception des topologies de ce même type de réseau. Finalement, nous améliorons les techniques d'apprentissage supervisé en augmentant la capacité de mémoire de réseaux récurrents. Les éléments de cette thèse marient l'inspiration biologique du cerveau, l'ingénierie neuromorphique et l'informatique fondamentale pour permettre d'optimiser les réseaux de neurones pouvant fonctionner sur des processeurs neuromorphiques analogiques
    corecore